Design your implementation of the circular queue. The circular queue is a linear data structure in which the operations are performed based on FIFO (First In First Out) principle and the last position is connected back to the first position to make a circle. It is also called “Ring Buffer”.
One of the benefits of the circular queue is that we can make use of the spaces in front of the queue. In a normal queue, once the queue becomes full, we cannot insert the next element even if there is a space in front of the queue. But using the circular queue, we can use the space to store new values.
Implementation the MyCircularQueue class:
MyCircularQueue(k) Initializes the object with the size of the queue to be k. int Front() Gets the front item from the queue. If the queue is empty, return -1. int Rear() Gets the last item from the queue. If the queue is empty, return -1. boolean enQueue(int value) Inserts an element into the circular queue. Return true if the operation is successful. boolean deQueue() Deletes an element from the circular queue. Return true if the operation is successful. boolean isEmpty() Checks whether the circular queue is empty or not. boolean isFull() Checks whether the circular queue is full or not. You must solve the problem without using the built-in queue data structure in your programming language.
Input [“MyCircularQueue”, “enQueue”, “enQueue”, “enQueue”, “enQueue”, “Rear”, “isFull”, “deQueue”, “enQueue”, “Rear”][3], [1], [2], [3], [4], [], [], [], [4], []] Output [null, true, true, true, false, 3, true, true, true, 4]
MyCircularQueue myCircularQueue = new MyCircularQueue(3); myCircularQueue.enQueue(1); // return True myCircularQueue.enQueue(2); // return True myCircularQueue.enQueue(3); // return True myCircularQueue.enQueue(4); // return False myCircularQueue.Rear(); // return 3 myCircularQueue.isFull(); // return True myCircularQueue.deQueue(); // return True myCircularQueue.enQueue(4); // return True myCircularQueue.Rear(); // return 4
1 <= k <= 1000 0 <= value <= 1000 At most 3000 calls will be made to enQueue, deQueue, Front, Rear, isEmpty, and isFull.
from collections import deque
class MyCircularQueue:
def __init__(self, k: int):
self.queue = [None] * k
self.size = k
self.front = 0
self.rear = 0
def enQueue(self, value: int) -> bool:
if self.queue[self.rear] is None :
self.queue[self.rear] = value
self.rear = (self.rear + 1) % self.size
return True
else :
return False
def deQueue(self) -> bool:
if self.queue[self.front] is None :
return False
else :
self.queue[self.front] = None
self.front = (self.front+1) % self.size
return True
def Front(self) -> int:
return -1 if self.queue[self.front] is None else self.queue[self.front]
def Rear(self) -> int:
return -1 if self.queue[self.rear -1 ] is None else self.queue[self.rear - 1]
def isEmpty(self) -> bool:
return self.front == self.rear and self.queue[self.front] is None
def isFull(self) -> bool:
return self.front == self.rear and self.queue[self.front] is not None
# Your MyCircularQueue object will be instantiated and called as such:
# obj = MyCircularQueue(k)
# param_1 = obj.enQueue(value)
# param_2 = obj.deQueue()
# param_3 = obj.Front()
# param_4 = obj.Rear()
# param_5 = obj.isEmpty()
# param_6 = obj.isFull()
이번 원형 큐 구현은 front
와 rear
이라는 투 포인터를 이용하여 구현했다. 일반적인 파이썬의 리스트를 활용하여 구현할 수 있었다. enqueue
될 땐 rear
가 증가하고 dequeue
될 때는 front
가 증가하도록 하고 %size
를 통해 큐의 크기를 벗어나지 않도록 구현할 수 있었다.